Livio Zucca


We are searching for the 120 shapes that can be covered by a pentomino or a tetromino or a tromino. We'll give precedence to the solutions on the finite plane with the smallest surface. If there aren't solutions on the plane, we'll accept solutions on cylindrical surface or on Moebius strip. Solutions on torus are not interesting because each pentomino, tetromino and tromino covers a torus. If you have better solutions, please send me HERE with gif, jpg, bmp, FidoCad or ascii-art format.

F5I4I3 F5L4I3 F5N4I3 F5Q4I3 F5T4I3
F5I4L3 F5L4L3 F5N4L3 F5Q4L3 F5T4L3
I5I4I3 I5L4I3 I5N4I3 I5Q4I3 I5T4I3
I5I4L3 I5L4L3 I5N4L3 I5Q4L3 I5T4L3
L5I4I3 L5L4I3 L5N4I3 L5Q4I3 L5T4I3
L5I4L3 L5L4L3 L5N4L3 L5Q4L3 L5T4L3
P5I4I3 P5L4I3 P5N4I3 P5Q4I3 P5T4I3
P5I4L3 P5L4L3 P5N4L3 P5Q4L3 P5T4L3
N5I4I3 N5L4I3 N5N4I3 N5Q4I3 N5T4I3
N5I4L3 N5L4L3 N5N4L3 N5Q4L3 N5T4L3
T5I4I3 T5L4I3 T5N4I3 T5Q4I3 T5T4I3
T5I4L3 T5L4L3 T5N4L3 T5Q4L3 T5T4L3
U5I4I3 U5L4I3 U5N4I3 U5Q4I3 U5T4I3
U5I4L3 U5L4L3 U5N4L3 U5Q4L3 U5T4L3
V5I4I3 V5L4I3 V5N4I3 V5Q4I3 V5T4I3
V5I4L3 V5L4L3 V5N4L3 V5Q4L3 V5T4L3
W5I4I3 W5L4I3 W5N4I3 W5Q4I3 W5T4I3
W5I4L3 W5L4L3 W5N4L3 W5Q4L3 W5T4L3
X5I4I3 X5L4I3 X5N4I3 X5Q4I3 X5T4I3
X5I4L3 X5L4L3 X5N4L3 X5Q4L3 X5T4L3
Y5I4I3 Y5L4I3 Y5N4I3 Y5Q4I3 Y5T4I3
Y5I4L3 Y5L4L3 Y5N4L3 Y5Q4L3 Y5T4L3
Z5I4I3 Z5L4I3 Z5N4I3 Z5Q4I3 Z5T4I3
Z5I4L3 Z5L4L3 Z5N4L3 Z5Q4L3 Z5T4L3

Paolo's idea

See also:
Tetrominoes Challenge

Visit the wonderful site of Jorge Luis Mireles


It isn't trivial!

First edition: Dic 7th, 2003 - Last revision: Dic 29th, 2003


Homepage of Livio Zucca

Below you'll find a mirror of Livio Zucca pages. Click here for my home